MotoParts autóalkatrészek
Renault Crossoverek a Renault Budapestnél

Ön itt van most: Tesztelők.hu » Technika » Új erőforrás a Yarisban

Új erőforrás a Yarisban

2017. január 30.

A hamarosan hatályba lépő Euro 6c emissziós normára és az RDE (real driving emission, azaz valós körülmények között mért károsanyag-kibocsátás) homologizációs normára készülve a Toyota új fejlesztésű, 1,5 literes benzinmotorra cseréli le a Yaris jelenlegi 1,3 literes erőforrását. Az ESTEC (Economy with Superior Thermal Efficient Combustion, azaz takarékosság kiemelkedő termikus hatásfokú égés révén) motorcsaládba tartozó, új négyhengeres erőforrás olyan új műszaki megoldásokat alkalmaz, amelyek jobb teljesítményt, élvezetesebb vezethetőséget, ugyanakkor 12 százalékkal* kedvezőbb üzemanyag-fogyasztást eredményeznek a jelenlegi NEDC ciklus szerint.

Toyota_Logo

A Yarishoz 1496 cm3-es lökettérfogatú szívómotort terveztek a Toyota mérnökei. Ennek teljesítménye 111 LE / 82 kW, maximális forgatónyomatéka 136 Nm 4400/perc fordulatszámon. Ugyanakkor 118 Nm már 2000/perctől rendelkezésre áll. Az ehhez hasonló lökettérfogatú szívómotorok gyors gázreakciói olyan menetkomforttal ruházzák fel a Yarist, amely a városi forgalomban és a nyílt országúton egyaránt élvezetesebbé teszi vezetését. Az előző, 1,3 literes motorral összehasonlítva a teljesítmény-növekedés 0,8 másodperccel kedvezőbb 0-100 km/óra gyorsulást (11,8 helyett 11,0 mp) eredményezett. Különösen látványos a fejlődés a 80-120 km/óra közötti rugalmassági mérésnél: itt több mint egy másodperccel (18,8 helyett 17,6 mp) javult a Yaris teljesítménye. Az új Euro 6c szabvány, valamint a szintén új RDE homologizációs ciklus követelményeinek teljesítésében nagy segítségére volt a Toyotának a hybrid technológiák terén szerzett tapasztalata. Az új motorban ez a szegmens legjobbjai közé sorolható, 38,5 százalékos termikus hatásfokban nyilvánul meg. Ezt olyan megoldások alkalmazásával érték el, mint a nagy, 13,5:1 sűrítési viszony, a hűtött kipufogógáz-visszavezetés (EGR), valamint a változó szelepvezérlési rendszer kiterjesztése, ami lehetővé tette az átállást az Otto- és az Atkinson-ciklus között.

toy2

A nagyobb sűrítési viszony az égéstér kialakításának, valamint az új dugattyúk használatának köszönhető, amelyek homogén levegő-üzemanyag keveréket és gyors égést tesznek lehetővé. Az égés hőfokának csökkentése révén a hűtött EGR a kopogási hajlamot is csökkenti. Ezen felül a visszavezetett inert gázok mennyisége kis és közepes terhelés mellett lehetővé teszi a szivattyúzási veszteségek csökkentését, ami szintén javítja az üzemi hatásfokot. Végezetül az új változó szívószelep vezérlési rendszer (VVT-iE**) lehetővé teszi, hogy a motor a másodperc tört része alatt átváltson az Otto-ciklusból az Atkinson-ciklusba. A szívó oldali vezérműtengely elektromosan szabályozott eltolása révén a szívószelepek zárása a dugattyú alsó holtpontján túl késleltethető, ezzel csökken a sűrítési ciklus, ami újfent mérsékli a szivattyúzási veszteségeket (Atkinson-ciklus); vagy a zárást előre hozva visszaválthatunk Otto-ciklusba, hogy nagy terhelésen kedvezőbb teljesítményt mutasson a motor. A kipufogó oldali vezérműtengely fáziseltolását hidraulikus rendszer végzi.  A mérnökök arra is megoldást találtak, hogy hogyan lehet tartós autópálya-sebességek mellett csökkenteni a fogyasztást és károsanyag-kibocsátást. Az új motor ezért (a Toyotánál most első ízben alkalmazott) vízhűtéses leömlőt kapott. A gázhőmérséklet mérséklése révén így elkerülhető a keverék dúsulása, és ezáltal csökkenthető az égési hőmérséklet autópálya-sebességnél, ahol ezek a lépések mérséklik az üzemanyag-fogyasztást és a károsanyag-kibocsátást.

Az ESTEC motorcsalád összes új tagjához hasonlóan az új 1,5 literes szívómotor is megkapja a súrlódási veszteségek mérséklését eredményező, legújabb fejlesztéseket.

* CVT váltóval

** VVT-iE = villanymotorral működtetett, intelligens változó szelepvezérlés

A cikk megjelenését a Linartech Autó Kft. támogatta.

Ajánlott cikkek

Trabant kaland hirdetés

Hírlevél feliratkozás

Cégtaláló banner

Kiemelt partnereink:

Keresés

Autótechnika logó

tkveg

Alfa Romeo Giulia 2.2
Audi A4 1.8 Quattro
Audi A4 2.0 TDI
Audi A6 3.2 FSI
Audi A8 3.0 V6
Audi TT 3.2 VR6
BMW 116i
BMW 316i
BMW 325ci
BMW i3
Chevrolet Corvette C5 / Z06
Citroën C3 1.2 PureTech
Citroën C4 1.6 BlueHDI
Citroën C-Elysée
Citroën Grand C4 Picasso
Citroën Grand C4 Picasso ’17
Citroën C4 Cactus
Dacia Duster 1.5 dCi
Dacia Duster 1.6 16V
Dacia Dokker 1.5 dCi
Dacia Dokker 1.6
Dacia Lodgy 1.5 dCi
Dacia Lodgy facelift
Dacia Logan 1.5 dCi
Dacia Sandero Stepway
Fiat Fullback 2.4
Fiat Punto 55s
Fiat Tipo 1.4 T-Jet
Fiat Tipo 1.4 16V
Fiat Tipo kombi
Ford Focus 1.6 Ti-VCT
Ford Focus 2.0 TDCi X-Road
Ford Sierra 1.6 Pinto
Honda Civic
Hyundai i30 (2017)
Hyundai i30u CW
Hyundai ix35 FCEV
Hyundai Santa Fe
Isuzu D-Max 2.0 D
Infiniti Q30
Infiniti Q30S
Kia Cee’d 1.4
Kia Niro Hybrid
Kia Optima 2.0 CVVL
Kia Optima 1.7 CRDi
Kia Optima PHEV
Kia Optima SW GT
Kia Sorento 2.2 CRDi
Kia Sportage GT Line
Kia Soul EV
Lada 2104
Lada 2107
Lada 4×4 Classic
Lada Granta Liftback
Lada Kalina Cross
Lada Kalina Kombi
Lada Vesta 1.6 Lux
Lada Vesta tartósteszt
Lexus CT 200h
Lexus GS 450h
Lexus NX 300h
Lexus RX 450h F Sport
Lexus RC 300h F Sport
Mazda 5 2.0 GTA
Mazda 6 2.0 TE
Mazda 6 Sport GTA
Mercedes-Benz 300 CD
Mercedes-Benz S600
Mercedes-Benz E200
Mercedes-Benz CLK 320
Mitsubishi Lancer
Mitsubishi L200 2.4 DI-D
Mitsubishi Sigma 3.0 V6
Nissan Sunny B11 Coupé
Nissan Pulsar 1.2 DIG-T
Nissan Qashqai 1.6 DIG-T
Nissan X-Trail 2.0 dCi
Opel Adam Rocks
Opel Astra Classic II.
Opel Astra K 1.6 CDTI
Opel Corsa 1.4T
Opel Insignia 2.0 CDTI
Opel Insignia Grand Sport 2.0
Opel Insignia OPC
Opel Meriva 1.4T
Opel Mokka 1.4T
Opel Mokka X
Opel Vectra B Caravan
Opel Zafira Tourer
Peugeot 208 1.2
Peugeot 301 1.6D
Peugeot 308 SW (2011)
Peugeot 308 SW (2015)
Peugeot 308 SW (2017)
Peugeot 2008 1.2 AUT
Peugeot 2008 1.2
Peugeot 3008 1.6 BlueHDI
Peugeot 5008 2.0 HDI
Polski Fiat 125p
Polski Fiat 126p
Porsche Boxster 986
Porsche 911
Porsche 911 (993) Carrera
Porsche 924 Le Mans
Porsche 928 S4
Porsche 968 CS
Renault Clio Limited
Renault Captur Facelift
Renault Captur 1.2 TCe
Renault Captur 1.5 dCi
Renault Kadjar 1.5 dCi
Renault Koleos (2017)
Renault Mégane 1.5 dCi
Renault Mégane Grandtour
Renault Mégane GC 1.6 dCi
Renault Mégane GC 1.6 SCe
Renault Twingo 0.9T
Rolls-Royce Silver Shadow
SEAT Toledo 1.2 MPI
SEAT Toledo 1.9 TDI
Skoda Fabia 1.2 TSI
Skoda Kodiaq 2.0 TDI
Skoda Octavia 1.2 TSI
Skoda Rapid 1.0 TSI
Skoda Superb Combi
Ssangyong Korando 2.0 e-XDI
Ssangyong Rexton 2.2 e-XDI
Ssangyong Tivoli 1.6 e-XDI
Ssangyong Tivoli 1.6 e-XGI
Subaru Forester 2.0 D
Subaru Legacy 2.0 D
Subaru Levorg 1.6 GT
Subaru Outback 2.0 D
Suzuki Baleno 1.2
Suzuki Baleno SHVS
Suzuki Ignis 1.2 GL
Suzuki Ignis 1.2 GLX
Suzuki Jimny
Suzuki Swift 1.0 GA
Suzuki Swift 2017
Suzuki SX4 S-Cross 1.4T
Suzuki SX4 S-Cross 1.0T
Suzuki Vitara 1.6 GL+
Suzuki Vitara 1.6 D
Suzuki Vitara Limited
Suzuki Vitara S
Toyota Auris 1.6 Valvematic
Toyota Auris Hybrid
Toyota Auris TS Hybrid
Toyota Auris Touring Sports
Toyota Aygo 1.0
Toyota Avensis 2.0D-4D
Toyota C-HR 1.2T
Toyota C-HR Hybrid
Toyota Corolla 1.6 ’16
Toyota Corolla 1.6 ’12
Toyota Hilux 2.4 D-4D
Toyota MR2
Toyota Prius MK4
Toyota RAV4 2.0 D-4D
Toyota RAV4 Hybrid
Toyota Yaris 1.33
Toyota Yaris 1.5
Toyota Yaris Hybrid
Toyota Yaris Hybrid ’17
Toyota Verso 1.8
Trabant 601
Vw Arteon 2.0 TDI R-Line
Vw Golf IV Cabrio
Vw Golf VII. 1.4 TSI
Vw Passat 1.9 TDI
Vw Passat 2.0 TDI
Vw Passat B8 2.0 TDI
Vw Tiguan
Volvo S40 2.0

Fortuna Bt. a motorfleújítás szakértője

Autómentés Budapesten

Autóalkatrészek régi keleti és nyugati autótípusokhoz, retro-autoalkatresz.hu

Baráti Bontó Győrújbarát

Tesztvilag.hu